If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+17=-15x
We move all terms to the left:
3x^2+17-(-15x)=0
We get rid of parentheses
3x^2+15x+17=0
a = 3; b = 15; c = +17;
Δ = b2-4ac
Δ = 152-4·3·17
Δ = 21
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{21}}{2*3}=\frac{-15-\sqrt{21}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{21}}{2*3}=\frac{-15+\sqrt{21}}{6} $
| (3x-23)+(3x+19)+(4x-49)+(2x-7)=360 | | Y=100(1.05)^x | | 7b+3=38 | | 144x2+252x-90=0 | | 8(w-3)+5w=-20 | | (8c-31)+5c+(3c-36)+41+(3c-32)=360 | | Y=y-34 | | (8c-31)+5c+(3c-36)+(3c-32)=360 | | U+30=u | | 2n-2=-2(2+3n) | | 6x=12+18x | | 55+a+33+(a+46)+(2a-14)=360 | | 168=-12(x-12) | | (6s-32)+(s+38)+(5s-6)=360 | | 4^4x-12=256 | | (u+24)+(17u-40)+(11u-19)+(14u+8)=360 | | 90+3x+6+3x+6=180 | | -57-22=47x+43-5x | | 9cc=10 | | U+103+120+(3u-31)=360 | | 180=5+x+4x-3 | | 2b+32+(2b-32)+(2b-36)=360 | | 4x=x+9= | | 11(-3-4x)-2=3611 | | -5(3z+2)=-11z | | 41+32+2c+2c+3c=360 | | (-1/3x)+(5/3)=(-6/3) | | 4y+7=9y-33 | | 10x−(x−45)=2x−(+x) | | 8^x+4=32^3x | | 3x1.75+10=5 | | 22+x=-6+3x |